SOL-GEL PROCESSING OF CERAMICS AND GLASS

AVM016G June 2014

Andrew McWilliams **Project Analyst**

ISBN: 1-56965-866-8

BCC Research
49 Walnut Park, Building 2
Wellesley, MA 02481 USA
866-285-7215 (toll-free within the USA),
or (+1) 781-489-7301
www.bccresearch.com
information@bccresearch.com

TABLE OF CONTENTS

TOPIC	PAGE NO.
CHARTER 1 INTRODUCTION	
CHAPTER 1 INTRODUCTION	2
STUDY GOALS AND OBJECTIVES	2
STUDY GOALS AND OBJECTIVES	3
INTENDED AUDIENCE	3
SCOPE AND FORMAT METHODOLOGY AND INFORMATION SOURCES	4
ANALYST'S CREDENTIALS	4
RELATED BCC RESEARCH REPORTS	4
BCC RESEARCH WEBSITE	5
DISCLAIMER	5
DISCLAIMICK	<u> </u>
CHAPTER 2 EXECUTIVE SUMMARY	7
SUMMARY TABLE U.S. AND WORLD MARKETS FOR SOL-GEL PRODUCTS, THROUGH 2019 (\$ MILLIONS)	7
SUMMARY FIGURE U.S. AND WORLD MARKETS FOR SOL-GEL PRODUCTS, (\$ MILLIONS)	7
CHAPTER 3 INDUSTRY AND MARKET OVERVIEW	10
U.S. MARKET	10
TABLE 1 FORECAST FOR THE U.S. SOL-GEL MARKET BY APPLICATION, THROUGH	10
2019 (\$ MILLIONS)	
FIGURE 1 U.S. SOL-GEL MARKET SHARES BY APPLICATION, 2013-2019 (%)	11
WORLD MARKET	12
TABLE 2 GLOBAL FORECAST FOR THE SOL-GEL PRODUCTS MARKET BY REGION, THROUGH 2019 (\$ MILLIONS)	12
FIGURE 2 GLOBAL MARKET SHARE BY COUNTRY/REGION, 2013 AND 2019 (%)	12
COMPETITION	13
RESEARCH AND DEVELOPMENT	14
U.S. INDUSTRY STRUCTURE	15
TABLE 3 U.S. COMPANIES INVOLVED IN SOL-GEL	15
CHAPTER 4 TECHNOLOGY OVERVIEW	19
HISTORY	19
TABLE 4 CHRONOLOGICAL HIGHLIGHTS OF SOL-GEL PRODUCTS	21
TABLE 5 SELECTED COMMERCIAL PRODUCTS AND APPLICATIONS	23
DESCRIPTION OF THE ALKOXIDE SOL-GEL PROCESS	23
TABLE 6 ADVANTAGES AND DISADVANTAGES OF THE CONVENTIONAL SOL-GEL PROCESS	24
ADVANTAGES	25
Lower Processing Temperatures	25
Lower Costs	25
Doping	25
TABLE 7 DOPANTS AND RESULTANT PROPERTIES	25
DISADVANTAGES	26
Long Processing Times	26
Preferential Hydrolysis	27

TOPIC	PAGE NO.
Cracking	27
Precursors	28
TABLE 8 CHEMAT TECHNOLOGY'S SOLUBLE POLYMERIC METAL ORGANIC OXOALKOXIDE PRECURSORS	29
Additives	30
THE AQUEOUS SOL-GEL PROCESS	31
THE CONVENTIONAL METHOD	31
Applications	31
OTHER METHODS	32
FIGURE 3 PROCESS FOR WATER-BASED ZIRCONIA SOLS	33
END PRODUCTS	34
FIGURE 4 GENERIC FLOWCHART OF THE SOL-GEL PROCESS	34
TABLE 9 CHARACTERISTICS OF SOL-GEL PRODUCTS	35
POROUS SOLIDS	35
POWDERS	36
TABLE 10 POWDER PRECURSORS AND RESULTANT COMPOSITIONS	37
Oxide Powders	39
FIGURE 5 FLOWCHART FOR THE FLAKE MANUFACTURING PROCESS	39
Pigments	41
FIGURE 6 FLOWCHART FOR MAKING VANADIUM-BASED PIGMENTS	42
FIGURE 7 PROCESS FOR MAKING PINK PIGMENTS	42
FIGURE 8 PROCESS FOR MAKING YELLOW-GREEN PIGMENTS	43
Nonoxide Powders	44
COATINGS AND THIN FILMS	45
TABLE 11 COATING PRECURSORS AND RESULTANT COMPOSITIONS	45
Application Methods	47
Dip-Coating	47
FIGURE 9 SCHEMATIC OF DIP-COATING	48
Spin Coating	48
FIGURE 10 SCHEMATIC OF SPIN COATING	48
Meniscus Coating	49
FIGURE 11 SCHEMATIC OF MENISCUS COATING	49
TABLE 12 ADVANTAGES AND DISADVANTAGES OF SOL-GEL COATING METHODS	50
Other Methods	51
Thick Coatings	51
TABLE 13 PROCESSES FOR MAKING THICK COATINGS	51
Heat Treatments	52
TABLE 14 COMPARISON OF COATING METHODS	53
Process Parameters	53
Dense Coatings	54
TABLE 15 COATING THICKNESSES FOR A VARIETY OF COATINGS	54
FIGURE 12 SCHEMATIC OF LIQUID PHASE DEPOSITION	55
Porous Coatings	56
Coatings for Plastics	56
Applications	57
TABLE 16 APPLICATIONS OF SOL-GEL FILMS AND COATINGS	57
GLASS	58
TABLE 17 APPLICATIONS OF SOL-GEL GLASSES	58

TOPIC	PAGE NO.
Silica	59
Type V Silica	59
Type VI Silica	60
Doped Silica	60
Silicates	60
Nonsilicates	61
MONOLITHS	62
Aerogels	63
TABLE 18 TYPICAL PROPERTIES OF AEROGELS	64
TABLE 19 APPLICATIONS OF AEROGELS	64
Silica	66
Silica Nanocomposites	67
Other Oxides	67
Carbon Aerogels	67
TABLE 20 TYPICAL PROPERTIES OF STANDARD AEROGEL PRODUCTS	68
Controlling Properties	68
Limitations	69
Xerogels	69
Controlling Properties	70
Silicate and Ceramic Foams	70
Colloidal Inks That Form Self-Supporting Scaffolds through	71
Robocasting	71
Hydrogel Nanoparticles for Optically Tunable Photonic Crystals	72
Monolithic Dry Gels Produced Using Sol-Gel Technology	73
FIBERS	74
Compositions	74
FIGURE 13 PROCESS FOR MAKING 3M CERAMIC FIBERS	75
TABLE 21 COMPARISON OF PROPERTIES OF COMMERCIAL REINFORCING FIBERS	75
Properties	77
COMPOSITES	77
FIGURE 14 COMPOSITE PROCESS INCORPORATING DIFFERENT	77
FIGURE 15 FLOWCHART FOR MAKING FIBER LAMINATE COMPOSITES	78
Control of Microstructure	78
TABLE 22 TAILORED COMPOSITES USING SOL-GEL	79
TABLE 23 MECHANICAL PROPERTIES OF SOL-GEL COMPOSITES	79
Interfacial Coatings	80
TABLE 24 SOL-GEL COATINGS FOR FIBERS	81
Infiltration for Densification	82
TABLE 25 TYPICAL COMPOSITE PROPERTIES MADE FROM FREEZE GELATION	82
Glass Matrix	83
Ceramic Matrix	84
Nanocomposites	85
ORGANIC/INORGANIC HYBRIDS	86
Ormosils	86
Ormacers	87
Hybrid Systems	87
TABLE 26 ORGANIC/INORGANIC MATERIAL SYSTEMS AND PROPERTIES	88
Control of Properties	88

TOPIC	PAGE NO.
Other Methods	89
A New Sol-Gel Route to Organic/Inorganic Hybrid Materials	90
CHAPTER 5 APPLICATIONS AND MARKETS	93
OPTICAL/OPTOELECTRONIC APPLICATIONS	93
TABLE 27 OPTICAL AND OPTO-ELECTRONIC PRODUCTS AND APPLICATIONS	94
FIGURE 16 SCHEMATIC OF THE EMBOSSING PROCESS	94
COATINGS	95
Antireflection/Solar Reflective Coatings	96
Automotive	97
Lasers	97
Solar Collectors and Solar Cells	98
FIGURE 17 SCHEMATIC OF TITANIA SOLAR CELL	99
Transparent Electronic Conducting Coatings	99
Flat Panel Displays	100
TABLE 28 PROPERTIES OF NHC SERIES FOR PROTECTION OF ELECTRODES	101
Electrochromic Coatings for Smart Windows	101
CHEMICAL SENSORS	102
pH Sensors	104
Metal Ion Sensors	105
Spectroelectrochemical Sensor	105
Biosensors	105
SOLID-STATE DYE LASERS	107
TABLE 29 SUMMARY OF SOL-GEL LASER SYSTEMS	107
HIGH-POWER LASERS	108
NANOMETER-RANGE MEDIA FOR POWDER LASERS	109
OPTICAL FIBERS AND DEVICES	109
Optical Fiber Overcladding	109
FIGURE 18 SCHEMATIC FOR MAKING OPTICAL FIBER	110
Waveguides	111
Fiber Amplifiers	111
Other Developments in Optical Fibers and Devices	112
Simax's Boron Doped Silica Material Reduces Panda Fiber Cost	112
Chemical Solution Gelation/Deposition for Optical Fibers and	
Devices	112
PHASIC Technology for Integrated Optics	113
Integrated Sol-Gel Fiber-Optic Sensors	113
LUMINESCENT LIGHT/POWER SOURCES	114
Fluorescent Lighting	114
Carbon-activated Phosphors	115
Phosphors for Flat and Plasma Displays	116
FIGURE 19 FLOW DIAGRAM FOR SRAL204: EU, DY VIA SOL-GEL	117
GRADIENT INDEX LENSES	118
TABLE 30 COMPARISON OF GRIN PROCESSING METHODS	119
OPTICAL MARKETS	119
ELECTRONIC/ELECTRO-OPTIC APPLICATIONS	120
FERROELECTRIC THIN FILMS	120
Applications	120
друпсанопо	120

TOPIC	PAGE NO.
TABLE 31 MATERIALS AND APPLICATIONS FOR FERROELECTRIC THIN FILMS	121
Deposition Methods	122
Other Compositions	123
FIGURE 20 FLOWCHART OF SBT FILM PROCESS	124
Thick Films	125
DIELECTRIC THIN FILMS	126
ELECTRONIC POWDERS/COMPONENTS	126
FIGURE 21 METHOD FOR MAKING ZNO POWDERS	128
CAPACITORS	129
SUBSTRATES	129
PACKAGES AND DEVICES	130
MAGNETICS	130
SUPERCONDUCTORS	131
Powders	131
Thin and Thick Films	132
ELECTRODES AND BATTERIES	132
Membranes for Batteries	133
NASICON Thin Films for Batteries	134
Aerogels	134
ELECTRONIC MARKETS	135
STRUCTURAL AND HIGH-TEMPERATURE APPLICATIONS	135
ABRASIVES	136
3M's Cubitron	136
FIGURE 22 SCHEMATIC OF CUBITRON 321 PROCESS	136
TABLE 32 COMPARISON OF ABRASIVE PROPERTIES	137
Saint-Gobain	138
TABLE 33 ADVANTAGES OF SG WHEELS	138
Other Abrasives	139
PROTECTIVE COATINGS	139
FIGURE 23 PROCESS FOR MAKING SILICA-TITANIA FILMS	142
Other Developments	143
Sol-Gel Techniques Help to Form Hybrid Glass Coatings	143
Sol-Gel Route for the Protection of Carbon in Hot Oxidizing Atmosphere	144
High-Temperature Insulation of Wires and Thermocouples	144
Pink Colored Film for Automobile Windows Using Sol-Gel Process	145
Sol-Gel-Derived Abrasion-Resistant Coatings with a Long Shelf Life	145
Abrasion-Resistant Optical Coatings	145
THERMAL INSULATION	146
Aerogel Windows	146
Lumira Insulation	146
Flexible Aerogel Blanket	147
Cryogenic Insulation	147
Solar Collectors	147
TABLE 34 ANNUAL PERFORMANCE OF FLAT SOLAR COLLECTORS	148
Replacement for CFC Insulating Foams	148
REFRACTORY/HIGH TEMPERATURE	148

TOPIC	PAGE NO.
Fibers	149
TABLE 35 PROPERTIES OF NEXTEL FIBERS	149
TABLE 36 APPLICATIONS AND MARKETS FOR NEXTEL FIBERS	151
Heat Exchangers and Related Applications	152
TABLE 37 STRENGTH OF TECHNIWEAVE COMPOSITES	152
BIOMEDICAL APPLICATIONS	152
DENTAL SEALANTS AND FILLERS	153
BIOACTIVE GLASSES	153
TABLE 38 APPLICATIONS OF BIOACTIVE GLASSES AND GLASS-CERAMICS	154
Bioactive Phosphates	155
Encapsulation of Living Cells	156
Micro-Encapsulation and Delivery	157
COSMETIC APPLICATIONS	158
CHEMICAL APPLICATIONS	158
CATALYSTS	159
TABLE 39 MATERIAL SYSTEMS AND APPLICATIONS FOR CATALYSTS	161
NUCLEAR APPLICATIONS	162
SEPARATION MEMBRANES AND FILTERS	163
TABLE 40 TYPICAL APPLICATIONS OF CERAMIC MEMBRANES	163
FIGURE 24 PROCESS FLOWCHARTS FOR MAKING SOL-GEL MEMBRANES	164
OTHER APPLICATIONS	167
DECORATIVE COATINGS	167
TABLE 41 COMPARISON OF DECORATIVE COATINGS	167
INK JET FILM FOR TRANSPARENCIES	169
SOL-GEL COATINGS FOR ART CONSERVATION	169
SOL OLL SOMMINGS FORMALIN GONDLINAMINGN	
CHAPTER 6 OVERALL U.S. MARKETS	172
OPTICAL APPLICATIONS	172
TABLE 42 FORECAST FOR THE U.S. OPTICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	172
ELECTRONIC APPLICATIONS	173
TABLE 43 U.S. MARKETS FOR SOL-GEL IN ELECTRONIC APPLICATIONS, THROUGH	173
2019 (\$ MILLIONS)	173
STRUCTURAL APPLICATIONS	173
TABLE 44 FORECAST FOR THE U.S. STRUCTURAL APPLICATIONS MARKET,	
THROUGH 2019 (\$ MILLIONS)	174
CHEMICAL APPLICATIONS	174
TABLE 45 FORECAST FOR THE U.S. CHEMICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	175
BIOMEDICAL APPLICATIONS	175
TABLE 46 FORECAST FOR THE U.S. BIOMEDICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	175
CHAPTER 7 FOREIGN COMPETITION	177
JAPAN JAPAN	177
TABLE 47 SOL-GEL PRODUCTS COMMERCIALIZED IN JAPAN	177
EUROPE	178
WORLD MARKETS	180

TOPIC	PAGE NO.
TABLE 48 GLOBAL FORECAST FOR THE SOL-GEL PRODUCTS MARKET, THROUGH 2019 (\$ MILLIONS)	180
CHAPTER 8 APPENDIX	182
PROFILES OF SELECTED COMPANIES IN THE BUSINESS OF SOL-GEL TECHNOLOGIES AND PRODUCTS	182
AJJER, LLC	182
ALBANY INTERNATIONAL TECHNIWEAVE INC.	182
ASPEN AEROGELS INC.	182
CABOT CORP.	183
CALIFORNIA HARDCOATING CO.	183
CERAMEM CORP.	183
CHEMAT TECHNOLOGY INC.	184
CLEVELAND CRYSTALS INC.	184
COOPER BUSSMAN	185
CORNING INC.	186
DOW CORNING CORP.	186
EASTMAN KODAK	186
E.I. DUPONT DE NEMOURS & CO. INC.	187
FORD MOTOR CO.	187
FUELCELL ENERGY	187
GELEST INC.	188
HYBRID GLASS TECHNOLOGIES	188
LAWRENCE BERKELEY NATIONAL LABORATORY	188
LAWRENCE LIVERMORE NATIONAL LABORATORY	189
LIFE TECHNOLOGIES CORP.	189
LIGHT PATH TECHNOLOGIES INC.	190
MAGNA INTERNATIONAL INC.	190
MARKETECH INTERNATIONAL INC.	190
MARSHALL SPACE FLIGHT CTR.	191
MATECH	191
MATERIALS MODIFICATION INC.	192
NANOPORE INCORPORATED	192
NEO MATERIAL TECHNOLOGIES	193
OAK RIDGE NATIONAL LABORATORY	193
OCEAN OPTICS	194
PHYSICAL OPTICS CORP.	194
PPG INDUSTRIES INC.	194
RATH INC.	195
READE ADVANCED MATERIALS	195
SAINT-GOBAIN ABRASIVES INC.	195
SANDIA NATIONAL LABORATORIES (SNL)	196
SOL-GEL TECHNOLOGIES LTD.	196
SOLGENE THERAPEUTICS, LLC	197
TAASI CORP.	197
3M COMPANY	197
TPL INC.	198
YTC AMERICA INC.	199

LIST OF TABLES

TABLE HEADING	PAGE NO.
SUMMARY TABLE U.S. AND WORLD MARKETS FOR SOL-GEL PRODUCTS, THROUGH 2019 (\$ MILLIONS)	7
TABLE 1 FORECAST FOR THE U.S. SOL-GEL MARKET BY APPLICATION, THROUGH 2019 (\$ MILLIONS)	10
TABLE 2 GLOBAL FORECAST FOR THE SOL-GEL PRODUCTS MARKET BY REGION, THROUGH 2019 (\$ MILLIONS)	12
TABLE 3 U.S. COMPANIES INVOLVED IN SOL-GEL	15
TABLE 4 CHRONOLOGICAL HIGHLIGHTS OF SOL-GEL PRODUCTS	21
TABLE 5 SELECTED COMMERCIAL PRODUCTS AND APPLICATIONS	23
TABLE 6 ADVANTAGES AND DISADVANTAGES OF THE CONVENTIONAL SOL-GEL PROCESS	24
TABLE 7 DOPANTS AND RESULTANT PROPERTIES	25
TABLE 8 CHEMAT TECHNOLOGY'S SOLUBLE POLYMERIC METAL ORGANIC OXOALKOXIDE PRECURSORS	29
TABLE 9 CHARACTERISTICS OF SOL-GEL PRODUCTS	35
TABLE 10 POWDER PRECURSORS AND RESULTANT COMPOSITIONS	37
TABLE 11 COATING PRECURSORS AND RESULTANT COMPOSITIONS	45
TABLE 12 ADVANTAGES AND DISADVANTAGES OF SOL-GEL COATING METHODS	50
TABLE 13 PROCESSES FOR MAKING THICK COATINGS	51
TABLE 14 COMPARISON OF COATING METHODS	53
TABLE 15 COATING THICKNESSES FOR A VARIETY OF COATINGS	54
TABLE 16 APPLICATIONS OF SOL-GEL FILMS AND COATINGS	57
TABLE 17 APPLICATIONS OF SOL-GEL GLASSES	58
TABLE 18 TYPICAL PROPERTIES OF AEROGELS	64
TABLE 19 APPLICATIONS OF AEROGELS	64
TABLE 20 TYPICAL PROPERTIES OF STANDARD AEROGEL PRODUCTS	68
TABLE 21 COMPARISON OF PROPERTIES OF COMMERCIAL REINFORCING FIBERS	75
TABLE 22 TAILORED COMPOSITES USING SOL-GEL	79
TABLE 23 MECHANICAL PROPERTIES OF SOL-GEL COMPOSITES	79
TABLE 24 SOL-GEL COATINGS FOR FIBERS	81
TABLE 25 TYPICAL COMPOSITE PROPERTIES MADE FROM FREEZE GELATION	82
TABLE 26 ORGANIC/INORGANIC MATERIAL SYSTEMS AND PROPERTIES	88
TABLE 27 OPTICAL AND OPTO-ELECTRONIC PRODUCTS AND APPLICATIONS	94
TABLE 28 PROPERTIES OF NHC SERIES FOR PROTECTION OF ELECTRODES	101
TABLE 29 SUMMARY OF SOL-GEL LASER SYSTEMS	107
TABLE 30 COMPARISON OF GRIN PROCESSING METHODS	119
TABLE 31 MATERIALS AND APPLICATIONS FOR FERROELECTRIC THIN FILMS	121
TABLE 32 COMPARISON OF ABRASIVE PROPERTIES	137
TABLE 33 ADVANTAGES OF SG WHEELS	138
TABLE 34 ANNUAL PERFORMANCE OF FLAT SOLAR COLLECTORS	148
TABLE 35 PROPERTIES OF NEXTEL FIBERS	149
TABLE 36 APPLICATIONS AND MARKETS FOR NEXTEL FIBERS	151
TABLE 37 STRENGTH OF TECHNIWEAVE COMPOSITES TABLE 38 ADDITIONS OF BIOACTIVE CLASSES AND CLASS CERAMICS	152
TABLE 38 APPLICATIONS OF BIOACTIVE GLASSES AND GLASS-CERAMICS	154
TABLE 39 MATERIAL SYSTEMS AND APPLICATIONS FOR CATALYSTS	161
TABLE 40 TYPICAL APPLICATIONS OF CERAMIC MEMBRANES TABLE 41 COMPARISON OF DECORATIVE COATINGS	163
TABLE 41 COMPARISON OF DECORATIVE COATINGS	167

TABLE HEADING	PAGE NO.
TABLE 42 FORECAST FOR THE U.S. OPTICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	172
TABLE 43 U.S. MARKETS FOR SOL-GEL IN ELECTRONIC APPLICATIONS, THROUGH 2019 (\$ MILLIONS)	173
TABLE 44 FORECAST FOR THE U.S. STRUCTURAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	174
TABLE 45 FORECAST FOR THE U.S. CHEMICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	175
TABLE 46 FORECAST FOR THE U.S. BIOMEDICAL APPLICATIONS MARKET, THROUGH 2019 (\$ MILLIONS)	175
TABLE 47 SOL-GEL PRODUCTS COMMERCIALIZED IN JAPAN	177
TABLE 48 GLOBAL FORECAST FOR THE SOL-GEL PRODUCTS MARKET, THROUGH 2019 (\$ MILLIONS)	180

LIST OF FIGURES

FIGURE TITLE	PAGE NO.
SUMMARY FIGURE U.S. AND WORLD MARKETS FOR SOL-GEL PRODUCTS, (\$ MILLIONS)	7
FIGURE 1 U.S. SOL-GEL MARKET SHARES BY APPLICATION, 2013-2019 (%)	11
FIGURE 2 GLOBAL MARKET SHARE BY COUNTRY/REGION, 2013 AND 2019 (%)	12
FIGURE 3 PROCESS FOR WATER-BASED ZIRCONIA SOLS	33
FIGURE 4 GENERIC FLOWCHART OF THE SOL-GEL PROCESS	34
FIGURE 5 FLOWCHART FOR THE FLAKE MANUFACTURING PROCESS	39
FIGURE 6 FLOWCHART FOR MAKING VANADIUM-BASED PIGMENTS	42
FIGURE 7 PROCESS FOR MAKING PINK PIGMENTS	42
FIGURE 8 PROCESS FOR MAKING YELLOW-GREEN PIGMENTS	43
FIGURE 9 SCHEMATIC OF DIP-COATING	48
FIGURE 10 SCHEMATIC OF SPIN COATING	48
FIGURE 11 SCHEMATIC OF MENISCUS COATING	49
FIGURE 12 SCHEMATIC OF LIQUID PHASE DEPOSITION	55
FIGURE 13 PROCESS FOR MAKING 3M CERAMIC FIBERS	75
FIGURE 14 COMPOSITE PROCESS INCORPORATING DIFFERENT	77
FIGURE 15 FLOWCHART FOR MAKING FIBER LAMINATE COMPOSITES	78
FIGURE 16 SCHEMATIC OF THE EMBOSSING PROCESS	94
FIGURE 17 SCHEMATIC OF TITANIA SOLAR CELL	99
FIGURE 18 SCHEMATIC FOR MAKING OPTICAL FIBER	110
FIGURE 19 FLOW DIAGRAM FOR SRAL2O4: EU, DY VIA SOL-GEL	117
FIGURE 20 FLOWCHART OF SBT FILM PROCESS	124
FIGURE 21 METHOD FOR MAKING ZNO POWDERS	128
FIGURE 22 SCHEMATIC OF CUBITRON 321 PROCESS	136
FIGURE 23 PROCESS FOR MAKING SILICA-TITANIA FILMS	142
FIGURE 24 PROCESS FLOWCHARTS FOR MAKING SOL-GEL MEMBRANES	164