2014 BIOTECHNOLOGY RESEARCH REVIEW

BIO069F January 2015

Various Analysts **Project Analyst**

ISBN: 1-56965-995-8

BCC Research
49 Walnut Park, Building 2
Wellesley, MA 02481 USA
866-285-7215 (toll-free within the USA),
or (+1) 781-489-7301
www.bccresearch.com
information@bccresearch.com

TABLE OF CONTENTS

TOPIC	PAGE NO.
CHAPTER 1 FOREWORD	2
CHAFTER TTOREWORD	2
CHAPTER 2 GLOBAL MARKETS FOR BIOENGINEERED PROTEIN DRUGS (REPORT BIO009F)	4
STUDY GOALS AND OBJECTIVES	4
REASONS FOR DOING THIS STUDY	4
INTENDED AUDIENCE	5
SCOPE OF THE STUDY	5
METHODOLOGY	5
INFORMATION SOURCES	5
ANALYST'S CREDENTIALS	5
RELATED BCC RESEARCH REPORTS	6
SUMMARY	6
TABLE 1 GLOBAL MARKET FOR BIOENGINEERED PROTEIN DRUGS BY REGION, THROUGH 2019 (\$ MILLIONS)	8
FIGURE 1 GLOBAL MARKET FOR BIOENGINEERED PROTEIN DRUGS BY REGION, 2012-2019 (\$ MILLIONS)	8
OVERVIEW	8
BIOSYNTHESIS OF PROTEINS	9
TRANSCRIPTION	9
TRANSLATION	9
POST-TRANSCRIPTIONAL MODIFICATIONS	10
HISTORY OF BIOENGINEERED PROTEIN DRUGS	10
TABLE 2 EVOLUTION OF BIOENGINEERED PROTEINS DRUGS	10
BIOENGINEERED PROTEIN DRUGS	11
TABLE 3 BIOENGINEERED PROTEIN DRUGS VS. CHEMICALLY SYNTHESIZED DRUGS	12
ADVANTAGES OF BIOENGINEERED PROTEIN DRUGS	13
MANUFACTURING TECHNOLOGY	13
Fractionation or Cohn Process	13
TABLE 4 PROTEIN DRUGS MADE BY FRACTIONATION	14
Microbial Cell Fermentation and Bioreactors	14
TABLE 5 THERAPEUTIC DRUGS PRODUCED BY MICROBIAL FERMENTATION	15
Genetic Engineering	15
Genetically Modified Organisms	16
Pharming	16
TABLE 6 PROTEIN DRUGS PRODUCED BY TRANSGENIC ANIMALS, PLANTS AND MICROORGANISMS	16
Mammalian Cell Culture	17
TABLE 7 PROTEIN DRUGS MADE BY CELL CULTURE	18
Cell-Free Protein Synthesis Systems	18
ADMINISTRATION TECHNOLOGIES OF BIOENGINEERED PROTEIN DRUGS	18
Traditional Methods of Drug Delivery	19
Oral	19
Topical	19
Transmucosal	19
Inhalation	19

TOPIC	PAGE NO.
Parenteral	19
TABLE 8 ROUTES OF DRUG DELIVERY	20
Limitations Encountered by Traditional Drug Delivery	20
Current Research and Novel Approaches	21
Targeted Drug Delivery Carriers	21
Micelles	21
Liposomes	21
Microspheres	21
Nanoparticles	21
Microemulsions	22
Hydrogels	22
Thin-film Drug Delivery	22
Prodrug	22
MOLECULAR CLASSIFICATION OF PROTEIN DRUGS	22
Monoclonal Antibodies	23
Cytokines	24
Interferons	24
Interleukins	24
Colony Stimulating Factors	25
Peptide Hormones	25
Follicle Stimulating Hormones and Luteinizing Hormones	25
Growth Hormones	25
Erythropoietin	26
Insulin	26
Vaccines	26
Live Attenuated Vaccines	27
Inactivated/Killed Vaccines	27
Toxoid	27
Subunit/Conjugate	27
Therapeutic Enzymes	28
Digestive Enzymes	28
Metabolic Enzymes	28
Other Enzymes	29
Peptide Antibiotics	29
Blood Products	29
Alpha 1-Protease Inhibitor	30
Antihemophilic Factor	30
Antithrombin	30
C1 Esterase Inhibitor	30
Coagulation Factors	31
Immune Globulins	31
Protein C	31
Thrombin	31
CHAPTER 3 SYNTHETIC BIOLOGY: GLOBAL MARKETS (REPORT BIO066C)	33
STUDY GOALS AND OBJECTIVES	33
REASONS FOR DOING THE STUDY	33

TOPIC	PAGE NO.
CONTRIBUTION OF THE STUDY AND FOR WHOM	34
SCOPE AND FORMAT	34
TABLE 9 SCOPE OF REPORT	35
METHODOLOGY	35
INFORMATION SOURCES	36
RELATED BCC RESEARCH REPORTS	36
SUMMARY	36
TABLE 10 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY PRODUCT TYPE, THROUGH 2018 (\$ MILLIONS)	37
FIGURE 2 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY PRODUCT TYPE, 2012-2018 (\$ MILLIONS)	37
OVERVIEW	38
TABLE 11 SCOPE OF THIS REPORT	39
FIGURE 3 SYNTHETIC BIOLOGY VALUE-ADDED CHAIN	39
WHAT IS SYNTHETIC BIOLOGY?	40
DEVELOPMENT STAGE OF SYNTHETIC BIOLOGY	41
FIGURE 4 FROM THE NATURAL TO THE ARTIFICIAL	41
TABLE 12 SYNTHETIC BIOLOGY PARADIGM	42
FORCES DRIVING SYNTHETIC BIOLOGY MARKET GROWTH	42
TABLE 13 SYNTHETIC BIOLOGY GROWTH: DRIVING FORCES	43
GLOBAL MARKETS FOR SYNTHETIC BIOLOGY PRODUCTS	44
TABLE 14 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY END-USER INDUSTRY, THROUGH 2018 (\$ MILLIONS)	44
LIFE CYCLE STATUS OF PRODUCTS AND TECHNOLOGIES	45
TABLE 15 SYNTHETIC BIOLOGY PRODUCTS AND TECHNOLOGY LIFE CYCLE STAGE	45
SYNTHETIC BIOLOGY INDUSTRY	46
TABLE 16 SYNTHETIC BIOLOGY COMPETITORS BY MARKET FOCUS	46
SYNTHETIC BIOLOGY TECHNOLOGIES	47
SYNTHETIC BIOLOGY DEFINED	47
TABLE 17 SYNTHETIC BIOLOGY DEFINITIONS	47
HISTORY OF SYNTHETIC BIOLOGY	48
TABLE 18 SYNTHETIC BIOLOGY HISTORY	48
PARADIGM SHIFT IN BIOLOGY	51
TABLE 19 PARADIGM SHIFT CAUSED BY SYNTHETIC BIOLOGY	51
TABLE 20 GENETIC ENGINEERING AND SYNTHETIC BIOLOGY COMPARED	52
FIGURE 5 SCALE OF SYNTHETIC BIOLOGY	53
SYNTHETIC BIOLOGY TECHNOLOGY OVERVIEW	54
TABLE 21 SYNTHETIC BIOLOGY APPLICATIONS BY TECHNOLOGY	55
ENABLING TECHNOLOGIES	55
TABLE 22 IMPORTANCE OF ENABLING TECHNOLOGIES	55
DNA SYNTHESIS AND SEQUENCING COST TRENDS	56
TABLE 23 COSTS TO SEQUENCE AND SYNTHESIZE A HUMAN GENOME, 2001-2014	56
DNA SYNTHESIS TECHNOLOGIES	57
FIGURE 6 SCHEMATIC OF GENE SYNTHESIS TECHNOLOGIES	58
TABLE 24 COMPARISONS OF GENE SYNTHESIS TECHNOLOGIES	59
PCR-Based Approaches	59
Solid-Phase Approaches	60
MICROFLUIDIC TECHNOLOGIES	60

TOPIC	PAGE NO.
TABLE 25 IMPORTANCE OF MICROFLUIDICS TECHNOLOGIES IN SYNTHETIC BIOLOGY	61
DNA Microarrays: Oligos Synthesis	61
TABLE 26 MICROARRAY TYPES	61
TABLE 27 DNA MICROARRAY PLATFORM FEATURES	62
CHAPTER 4 CANCER PROFILING AND PATHWAYS: TECHNOLOGIES AND GLOBAL MARKETS (REPORT BIO073B)	65
STUDY GOALS AND OBJECTIVES	65
REASONS FOR DOING THE STUDY	65
SCOPE OF REPORT	65
INTENDED AUDIENCE	66
METHODOLOGY	67
INFORMATION SOURCES	67
ABOUT THE AUTHOR	67
RELATED BCC RESEARCH REPORTS	68
SUMMARY OF CANCER PROFILING AND PATHWAYS	68
TABLE 28 MARKET FOR CANCER PROFILING TECHNOLOGIES, THROUGH 2018 (\$ MILLIONS)	70
FIGURE 7 MARKET FOR CANCER PROFILING TECHNOLOGIES, 2012-2018 (\$ MILLIONS)	70
CANCER PROFILING OVERVIEW	70
BIOMARKERS	71
GUIDELINES	71
SCREENING TESTS	72
EARLY DETECTION AND DIAGNOSIS OF CANCER	72
PATHWAY PROFILING	73
LINKING CANCER DISEASE THROUGH PATHWAY PROFILING	73
MOLECULAR PROFILING	73
HISTORICAL FACTS	74
MOLECULAR PROFILES	74
ONCOTYPE DX	75
CANCER PROFILING	75
CHALLENGES	76
PRIMARY OBJECTIVES OF THE MINDACT TRIAL	78
Lung Cancer	78
Challenges	79
CLINICAL UTILITY OF MOLECULAR PROFILING	80
CARIS LIFE SCIENCES	81
Head and Neck Cancer Data	81
Pathological Classification	82
MOLECULAR PROFILING APPROACHES	83
TABLE 29 DIFFERENT TOOLS FOR MOLECULAR PROFILING OF CANCER	83
CANCER PROFILING: FUTURE GOALS	84
CHAPTER 5 GLOBAL MARKET FOR MICROBIOLOGY TECHNOLOGY, EQUIPMENT AND CONSUMABLES (REPORT BIO130A)	87
STUDY GOALS AND OBJECTIVES	87
STOPT GOALS AND OBJECTIVES	07

TOPIC	PAGE NO.
REASONS FOR DOING THE STUDY	87
SCOPE OF REPORT	87
INTENDED AUDIENCE	88
INFORMATION SOURCES	88
ANALYST CREDENTIALS	88
RELATED BCC RESEARCH REPORTS	88
SUMMARY	88
TABLE 30 GLOBAL CONSUMABLE, EQUIPMENT AND TECHNOLOGY MARKET BY MICROBIOLOGY INDUSTRY BY SECTOR, THROUGH 2018 (\$ MILLIONS)	89
FIGURE 8 GLOBAL CONSUMABLE, EQUIPMENT AND TECHNOLOGY MARKET BY MICROBIOLOGY INDUSTRY BY SECTOR, 2011-2018 (\$ MILLIONS)	90
RISE OF INDUSTRIAL MICROBIOLOGY	90
FASTER IS BETTER	90
MOLECULAR TECHNIQUES THROUGHOUT THE INDUSTRY	91
BIOFUEL POWER	91
MICROBES AS A BUSINESS	91
MICROBIOLOGY TECHNOLOGY USES	91
MICROBIOLOGY OVERVIEW	92
SECTORS	93
ACADEMIA	93
GOVERNMENT	94
PUBLIC HEALTH	94
Regulatory	95
Food, Drugs and Healthcare Products	95
INDUSTRY	95
Clinical	95
Pharmaceutical	96
Environmental	96
Manufacturing	97
Energy	97
Food	98
USES	98
CLINICAL	99
Technology	100
Equipment	100
Consumables	100
ENVIRONMENTAL MICROBIOLOGY	101
Technology	102
Equipment	102
Consumables	102
EPIDEMIOLOGY	103
Technology	104
Equipment	104
Consumables	104
PRODUCT MANUFACTURING	105
Food	105
Technology	106
Equipment	106

TOPIC	PAGE NO.
Consumables	106
ENERGY	107
Technology	108
Equipment	108
Consumables	108
INDUSTRIAL MICROBIOLOGY	108
Technology	110
Equipment	110
Consumables	110
CHAPTER 6 INDUCED PLURIPOTENT STEM CELLS: GLOBAL MARKETS (REPORT BIO135A)	112
STUDY OBJECTIVES	112
REASONS FOR DOING THIS STUDY	112
INTENDED AUDIENCE	112
SCOPE OF REPORT	113
METHODOLOGY	113
INFORMATION SOURCES	113
ANALYST CREDENTIALS	113
RELATED BCC RESEARCH REPORTS	114
MARKET SUMMARY	114
KEY DRIVERS FOR MARKET GROWTH	114
TABLE 31 GLOBAL INDUCED PLURIPOTENT STEM CELL MARKET BY REGION, THROUGH 2018 (\$ MILLIONS)	115
FIGURE 9 GLOBAL INDUCED PLURIPOTENT STEM CELL MARKET BY REGION, 2012-2018 (\$ MILLIONS)	115
INDUCED PLURIPOTENT STEM CELL OVERVIEW	116
HISTORY AND CURRENT STATE	117
EVOLUTION OF INDUCED PLURIPOTENT STEM CELL RESEARCH	118
INDUCED PLURIPOTENT STEM CELL ADVANTAGES AND DISADVANTAGES	119
ADVANTAGES	119
DISADVANTAGES	119
TECHNOLOGY OVERVIEW	120
INDUCED PLURIPOTENT STEM CELL GENERATION	121
Retrovirus and Lentivirus	121
Adenovirus	122
Sendai Virus	122
Episomal Plasmids	122
PiggyBac	122
Minicircle Vectors	123
Synthetic mRNA	123
Protein	123
Small-Molecular Chemicals	123
INDUCED PLURIPOTENT STEM CELL DIFFERENTIATION	124
Cardiomyocytes	124
Hepatocytes	125
Neurons	126
Endothelia Cells	126

TOPIC	PAGE NO.
INDUCED PLURIPOTENT STEM CELL APPLICATIONS	127
ACADEMIC RESEARCH	127
PHARMACO-TOXICOLOGICAL SCREENING	127
DRUG DISCOVERY AND DEVELOPMENT	129
DISEASE MODELING	129
TISSUE ENGINEERING	130
CELL THERAPY	131
CHAPTER 7 DIGITAL POLYMERASE CHAIN REACTION (PCR) TECHNOLOGY: GLOBAL MARKETS (REPORT BIO137A)	133
STUDY OBJECTIVES	133
REASONS FOR DOING THE STUDY	133
SCOPE OF REPORT	133
INTENDED AUDIENCE	134
INFORMATION SOURCES	134
ANALYST'S CREDENTIALS	134
RELATED BCC RESEARCH REPORTS	134
INDUSTRY TRENDS	135
EXPLOSIVE GROWTH IN DIGITAL PCR	135
KEY PLAYERS IN THE EQUIPMENT AND ASSAY SEGMENTS	135
END OF THE LDT	135
TECHNIQUE MATTERS	135
CURE FOR CANCER AND AIDS	136
A CHEAPER WAY FOR ACADEMIA	136
A SOLUTION TO CHALLENGING PCR PROBLEMS	136
STEEP LEARNING CURVE	136
TABLE 32 GLOBAL MARKET FOR DIGITAL PCR TECHNOLOGY BY SEGMENT, THROUGH 2018 (\$ MILLIONS)	137
FIGURE 10 GLOBAL MARKET FOR DIGITAL PCR TECHNOLOGY BY SEGMENT, 2011-2018 (\$ MILLIONS)	137
OVERVIEW OF PCR TECHNOLOGY	137
EVOLUTION OF PCR TECHNOLOGY AND ITS IMPACT ON THE HEALTHCARE INDUSTRY	137
FIGURE 11 IMPACT OF PCR TECHNOLOGY ON THE HEALTHCARE ENVIRONMENT	138
TRENDS IN DEVICE DESIGN	138
TRADITIONAL PCR VS. REAL-TIME PCR	139
RAPID GROWTH IN THE MOLECULAR DIAGNOSTIC INDUSTRY	139
PRODUCT INNOVATIONS INCREASE TECHNOLOGY ADOPTION AND APPLICATION AREAS	140
WIDE RANGE OF APPLICATIONS	141
MARKET CHALLENGES	141
Lack of Awareness	141
Requirement for Skilled Labor	141
High Cost of Real-time PCR Instruments	142
INSTRUMENT SELECTION CRITERIA	142
TABLE 33 COMPARISONS OF DIGITAL PCR TECHNOLOGIES	143
HISTORY OF DIGITAL PCR TECHNOLOGY	144
HOW THE TECHNOLOGY WORKS	145

TOPIC	PAGE NO.
VARIATIONS ON THE TECHNOLOGY	145
MICROFLUIDIC DIGITAL PCR	146
DROPLET DIGITAL PCR	146
BEAM DIGITAL PCR	146
SECTORS	147
PHARMACEUTICAL/BIOTECH AND CLINICAL DEVELOPMENT	147
CLINICAL DIAGNOSTICS	148
ACADEMIA	149
OTHER SECTORS	150
USES	150
ONCOLOGY	151
HIV	152
NEXT-GENERATION SEQUENCING	153
INFECTIOUS DISEASE	154
NON-INVASIVE DIAGNOSTICS	155
SNP DETECTION	156
EMERGING USES	157
SUMMARY	157
APTER 8 ENDNOTES	159

LIST OF TABLES

TABLE HEADING	PAGE NO.
TABLE 1 GLOBAL MARKET FOR BIOENGINEERED PROTEIN DRUGS BY REGION, THROUGH 2019 (\$ MILLIONS)	8
TABLE 2 EVOLUTION OF BIOENGINEERED PROTEINS DRUGS	10
TABLE 3 BIOENGINEERED PROTEIN DRUGS VS. CHEMICALLY SYNTHESIZED DRUGS	12
TABLE 4 PROTEIN DRUGS MADE BY FRACTIONATION	14
TABLE 5 THERAPEUTIC DRUGS PRODUCED BY MICROBIAL FERMENTATION	15
TABLE 6 PROTEIN DRUGS PRODUCED BY TRANSGENIC ANIMALS, PLANTS AND MICROORGANISMS	16
TABLE 7 PROTEIN DRUGS MADE BY CELL CULTURE	18
TABLE 8 ROUTES OF DRUG DELIVERY	20
TABLE 9 SCOPE OF REPORT	35
TABLE 10 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY PRODUCT TYPE, THROUGH 2018 (\$ MILLIONS)	37
TABLE 11 SCOPE OF THIS REPORT	39
TABLE 12 SYNTHETIC BIOLOGY PARADIGM	42
TABLE 13 SYNTHETIC BIOLOGY GROWTH: DRIVING FORCES	43
TABLE 14 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY END-USER INDUSTRY, THROUGH 2018 (\$ MILLIONS)	44
TABLE 15 SYNTHETIC BIOLOGY PRODUCTS AND TECHNOLOGY LIFE CYCLE STAGE	45
TABLE 16 SYNTHETIC BIOLOGY COMPETITORS BY MARKET FOCUS	46
TABLE 17 SYNTHETIC BIOLOGY DEFINITIONS	47
TABLE 18 SYNTHETIC BIOLOGY HISTORY	48
TABLE 19 PARADIGM SHIFT CAUSED BY SYNTHETIC BIOLOGY	51
TABLE 20 GENETIC ENGINEERING AND SYNTHETIC BIOLOGY COMPARED	52
TABLE 21 SYNTHETIC BIOLOGY APPLICATIONS BY TECHNOLOGY	55
TABLE 22 IMPORTANCE OF ENABLING TECHNOLOGIES	55
TABLE 23 COSTS TO SEQUENCE AND SYNTHESIZE A HUMAN GENOME, 2001-2014	56
TABLE 24 COMPARISONS OF GENE SYNTHESIS TECHNOLOGIES	59
TABLE 25 IMPORTANCE OF MICROFLUIDICS TECHNOLOGIES IN SYNTHETIC BIOLOGY	61
TABLE 26 MICROARRAY TYPES	61
TABLE 27 DNA MICROARRAY PLATFORM FEATURES	62
TABLE 28 MARKET FOR CANCER PROFILING TECHNOLOGIES, THROUGH 2018 (\$ MILLIONS)	70
TABLE 29 DIFFERENT TOOLS FOR MOLECULAR PROFILING OF CANCER	83
TABLE 30 GLOBAL CONSUMABLE, EQUIPMENT AND TECHNOLOGY MARKET BY MICROBIOLOGY INDUSTRY BY SECTOR, THROUGH 2018 (\$ MILLIONS)	89
TABLE 31 GLOBAL INDUCED PLURIPOTENT STEM CELL MARKET BY REGION, THROUGH 2018 (\$ MILLIONS)	115
TABLE 32 GLOBAL MARKET FOR DIGITAL PCR TECHNOLOGY BY SEGMENT, THROUGH 2018 (\$ MILLIONS)	137
TABLE 33 COMPARISONS OF DIGITAL PCR TECHNOLOGIES	143

LIST OF FIGURES

FIGURE TITLE	PAGE NO.
FIGURE 1 GLOBAL MARKET FOR BIOENGINEERED PROTEIN DRUGS BY REGION, 2012-2019 (\$ MILLIONS)	8
FIGURE 2 GLOBAL VALUE OF SYNTHETIC BIOLOGY MARKET BY PRODUCT TYPE, 2012-2018 (\$ MILLIONS)	37
FIGURE 3 SYNTHETIC BIOLOGY VALUE-ADDED CHAIN	39
FIGURE 4 FROM THE NATURAL TO THE ARTIFICIAL	41
FIGURE 5 SCALE OF SYNTHETIC BIOLOGY	53
FIGURE 6 SCHEMATIC OF GENE SYNTHESIS TECHNOLOGIES	58
FIGURE 7 MARKET FOR CANCER PROFILING TECHNOLOGIES, 2012-2018 (\$ MILLIONS)	70
FIGURE 8 GLOBAL CONSUMABLE, EQUIPMENT AND TECHNOLOGY MARKET BY MICROBIOLOGY INDUSTRY BY SECTOR, 2011-2018 (\$ MILLIONS)	90
FIGURE 9 GLOBAL INDUCED PLURIPOTENT STEM CELL MARKET BY REGION, 2012-2018 (\$ MILLIONS)	115
FIGURE 10 GLOBAL MARKET FOR DIGITAL PCR TECHNOLOGY BY SEGMENT, 2011-2018 (\$ MILLIONS)	137
FIGURE 11 IMPACT OF PCR TECHNOLOGY ON THE HEALTHCARE ENVIRONMENT	138