COMPOSITES IN AUTOMOTIVE APPLICATIONS

PLS081A October 2015

Melvin Schlechter Project Analyst

ISBN: 1-62296-172-2

BCC Research 49 Walnut Park, Building 2 Wellesley, MA 02481 USA 866-285-7215 (toll-free within the USA), or (+1) 781-489-7301 www.bccresearch.com information@bccresearch.com

торіс	PAGE NO.
	2
	2
REASONS FOR DOING THE STUDY	2
	2
STUDY COALS	2
	2
	2
	3
	3
DISCLAIMER	1
DISCLAIMEN	
CHAPTER 2 EXECUTIVE SUMMARY	6
SUMMARY TABLE GLOBAL AUTOMOTIVE COMPOSITE MARKET, THROUGH 2020 (MILLION POUNDS)	6
SUMMARY FIGURE GLOBAL AUTOMOTIVE COMPOSITE MARKET, 2014-2020 (MILLION POUNDS)	6
CHAPTER 3 AUTOMOTIVE INDUSTRY	9
OVERVIEW	9
CORPORATE AVERAGE FUEL ECONOMY ISSUES	9
AUTOMOBILE MANUFACTURERS, REGULATORS AND GREEN ADHERENTS SET FOR CARBON DIOXIDE BATTLE.	12
AUTOMAKERS PREFER METAL USAGE FOR COST SAVINGS RATHER THAN WEIGHT LOSS	13
STEEL INDUSTRY ACTIVITIES	13
MAKING PROGRESS	14
LOOKING BACK TO THE 2014 AUTOMOTIVE SECTOR	14
IMPORTANT INDUSTRY JOINT VENTURES	14
CHAPTER 4 AUTOMOTIVE SEGMENTS	16
AUTOMOBILE EXTERIORS	16
TABLE 1 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	16
BODY PANELS	16
Overview	16
Horizontal versus Vertical Body Panels (Steel versus Sheet Molding Compound)	17
General Decision Factors for Body Panels	18
Carbon Fiber Sheet Molding Compound	18
Thermoplastic Usage	18
Need for "Class A Finishes"	18
Other SMC Competition	19
Other Considerations	19
Paint-Free SMCs?	20
OTHER RESIN SYSTEMS USED IN AUTOMOBILE EXTERIORS	20
FENDERS	20
Background	20

TABLE OF CONTENTS

ΤΟΡΙΟ	PAGE NO.
Thermoplastics in Fenders	20
Injection-Molded Noryl GTX Fenders	21
SIDE MOLDING/TRIM	21
RADIATOR/GRILLES	21
TRANSPARENT AUTOMOBILE EXTERIORS	22
Background	22
Light Reflector Housings	22
Taillights and Rear Brake Lights	22
Polycarbonate Rear Window is 35% Lighter than Glass	23
Metal-to-Plastic Substitutions in Automobiles	23
Carbon-Fiber-Reinforced Polybutylene Terephthalate for Automotive Electronics	23
DSM Engineering Highlights Gas Tank and Under-the-Hood Automotive Applications	23
OVERALL USAGE OF RESINS IN EXTERIOR AUTOMOTIVE PARTS	23
TABLE 2 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	24
BUMPER SYSTEMS/PRODUCTS	24
OVERALL USAGE OF RESINS IN EXTERIOR AUTOMOTIVE PARTS	25
TABLE 3 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	25
AUTOMOTIVE INTERIORS	26
BACKGROUND	26
OVERVIEW OF SPECIFIC FIBER-REINFORCED PLASTIC AUTOMOTIVE INTERIOR APPLICATIONS	26
TABLE 4 RESINS USED FOR SPECIFIC INTERIOR AUTOMOTIVE PARTS	27
SEAT-RELATED AUTOMOTIVE INTERIOR PARTS	27
Background	27
Front Seat Bases	27
Front Seat Shells	28
Front Seat Backs	28
Rear Seats	28
Child-Safety Seats	28
Rear Seat Backs	29
TOUGH RESINS NEEDED FOR AIR BAG DOORS	29
INSTRUMENT PANELS	29
Overview	29
Instrument Panel Structures	30
KNEE BOLSTERS	30
Background	30
Resins Used	30
CONSOLES	31
HEADLINERS	31
Overview	31
Resin Usage	31
FLOORING	31
PACKAGE SHELVES/TRAYS	32
OVERALL RESIN USAGE	32
UNDER-THE-HOOD	32
OVERVIEW	32

ΤΟΡΙΟ	PAGE NO.
BACKGROUND	33
KEY FACTORS	33
TABLE 5 SELECTED AUTOMOTIVE UNDER-THE-HOOD REINFORCED RESIN COMPOSITES BY PART	34
UNDER-THE-HOOD DETAILS	35
Overview	35
Electronic Components	35
Material Usage	36
Expanded Use of Encapsulated Components	36
Bobbins/Connectors	37
Switches/Sockets	37
Ignition Components	37
PLASTIC ROCKER COVERS	38
CATALYTIC CONVERTERS	38
VALVE COVERS	38
INTAKE MANIFOLDS	38
HEATING/AIR-CONDITIONING EQUIPMENT	39
RESERVOIRS	39
POLYAMIDE CRANKSHAFT COVER	39
COMPOSITE FUTURE FOR CYLINDER HOUSINGS	40
SUMMARY	40
RECENT DEVELOPMENTS	40
Cylinder Casing	40
Composite Chevrolet Volt Battery Pack	40
Momentive Develops a 60-Second Epoxy	40
Solvay Developing All-Plastic Engine	41
Carbon/Epoxy Overbraided, Spring Carrier Beam	41
Other Important Targets for Composites in UTH Applications	41
What about Engine Design Changes?	41
Lightweight Suspension Systems	41
Fiber-Reinforced Plastics Seeing Increased Use in Engine Parts	42
Celanese Provides Plastic Transmission Cover	42
Plastic Automobile Transmission Conductor	42
CHAPTER 5 AUTOMOTIVE LIGHTWEIGHTING	44
INTRODUCTION	44
COMPARATIVE COSTS/STRENGTHS OF LIGHTWEIGHT MATERIALS FOR VEHICLE PRIMARY STRUCTURES	44
TABLE 6 AUTOMOTIVE MATERIALS STIFFNESS AND AVERAGE PRICE	44
AUTOMOTIVE INDUSTRY CONTRIBUTIONS TO CARBON DIOXIDE EMISSIONS	45
METALS AND ALLOYS	45
HIGH-STRENGTH STEELS	45
Background	45
Description	45
Technologies	46
CARBON-MANGANESE STEEL	46
HIGH-STRENGTH LOW-ALLOY STEELS	46
ADVANCED HIGH-STRENGTH STEELS	47

ΤΟΡΙΟ	PAGE NO.
Dual-Phase Steels	47
Transformation-Induced Plasticity Steels	47
High Hole Expansion Steels	47
Complex-Phase Steels	48
Martensitic Steels	48
END USES AND APPLICATIONS	48
TABLE 7 MAJOR END USES AND APPLICATIONS OF HIGH-STRENGTH STEEL	48
AUTOMOTIVE BODY STRUCTURES	49
METAL INDUSTRY IS NOT BEING PASSIVE	49
PLASTICS USAGE	50
OVERVIEW	50
TABLE 8 COMMONLY USED PLASTICS IN TRANSPORTATION APPLICATIONS	50
EXAMPLE OF INCREASED USAGE OF ENGINEERING POLYMERS	51
OVERALL CONSUMPTION IN AUTOMOTIVE PRODUCTION	51
TABLE 9 GLOBAL AUTOMOTIVE CONSUMPTION SHARE BY MATERIAL, 2014-2020 (%)	52
REDUCTION OF AUTOMOTIVE WEIGHT IS INCREASINGLY ABOUT AVOIDING EXTRA COSTS	52
LIGHTWEIGHTING IS THE TOP FUEL-EFFICIENCY GOAL	53
THE HUNT FOR EFFECTIVE AND REASONABLY PRICED LIGHTWEIGHT MATERIALS CONTINUES	53
PLASTICS ARE CLEARLY THE KEY TO AUTOMOTIVE LIGHTWEIGHTING	53
RECENT INDUSTRY POLL ON CHALLENGES TO FURTHER REDUCE VEHICLE WEIGHT	54
RECENT OPPORTUNITIES FOR PLASTICS IN AUTOMOTIVE LIGHTWEIGHTING	54
OVERVIEW	54
FORD GOING ALUMINUM?	55
CHEVROLET CAMARO USES ALUMINUM	55
MAZDA EFFORTS	55
SIGMATEX RECEIVES GOVERNMENT FUNDING FOR VEHICLE LIGHTWEIGHTING	55
ASIA AUTOMOTIVE LIGHTWEIGHT PROCUREMENT SYMPOSIUM 2015	55
GLOBAL AUTOMOTIVE LIGHTWEIGHT MATERIALS SYMPOSIUM IN DETROIT - 2015	56
	FO
	20
	50
	59
UVERVIEW	59
REINFORCED THERMOSET COMPOSITES BY RESIN TYPE	59
PROCESSING	60
Background	60
Hand Lay-Up	60
Spray-Up	60
Pultrusion	60
Filament Winding	61
Reinforced Reaction Injection Molding	61
IABLE 11 ADVANTAGES AND DISADVANTAGES OF CARBON-CARBON COMPOSITES	61
UTHER ADVANTAGES	62

ТОРІС	PAGE NO.
END-OF-LIFE RECYCLING	62
RECENT DEVELOPMENTS	63
Ready for Profound Changes	63
U.S. Composite Groups Join Forces in 2014.	63
Hybrid Polymer Systems Shown to Save Time and Costs in Composites Production	63
CHAPTER 7 AUTOMOTIVE INTERFACING WITH CARBON FIBER COMPOSITES	65
OVERVIEW	65
EXAMPLES REGARDING LOWERING THE WEIGHT OF AUTOMOBILES	65
THE CAR BODY OF THE FUTURE	65
NEW GROUP TO FOSTER USE OF COMPOSITES IN AUTOMOBILES	66
NEW CONTINUOUS-FIBER LAMINATE OVERMOLDING COMPOUND FOR AUTOMOTIVE USES	66
PRODUCTION OF LIGHTWEIGHT CARBON FIBER	66
POTENTIAL RESULTS FROM CARBON-FIBER-REINFORCED FIBERS	66
DOW AUTOMOTIVE OPENS SEVERAL COMPOSITE CENTERS	66
GENERAL MOTORS TO INVEST \$1 BILLION IN DETROIT-AREA TECH CENTER	67
COMPOSITE CAR FLOORS	67
RICE-HULL-REINFORCED PLASTICS IN TRUCKS	67
COMPOSITES REDUCE WHEEL WEIGHT	67
USE OF NATURAL FIBER COMPOSITES	67
REINFORCED POLYAMIDES USED FOR FRONT-END CARRIER	68
POLYAMIDES AND POLYESTERS REPLACE SMC IN MODULAR TRUCKS	68
QUESTIONS OF ECONOMIC VIABILITY OF CARBON FIBER COMPOSITES IN AUTOMOBILES	68
GROWTH OF REINFORCED EPOXIES IN AUTOMOBILES	69
ARE LARGE AUTOMAKERS BEING TOO CAUTIOUS TO MAKE THE 2025 DEADLINE OF 54.5 MILES PER GALLON?	69
CHINESE AUTOMOBILE MANUFACTURERS AIMING FOR INCREASED PLASTIC USAGE	69
GLOBAL CURRENT AND FUTURE HISTORY OF AUTOMOTIVE MATERIAL USAGE	70
TABLE 12 GLOBAL MATERIAL USAGE SHARE IN THE AUTOMOTIVE INDUSTRY,1977-2035 (%)	70
DRIVING THE CHANGE IN AUTOMOBILE PARTS	70
GENERAL MOTORS AND TEIJIN TECHNICAL CENTER	71
TORAY JOINS WITH DAIMLER	71
NEW ORGANIZATIONS BEING FORMED TO MEET CHALLENGES OF LOWERING MILES PER GALLON	71
NEW AUTOMOTIVE COMPOSITE PARTNERSHIPS	71
OTHER RECENT CORPORATE ACTIVITIES RELATED TO AUTOMOTIVE COMPOSITES	71
ANOTHER INDUSTRY SURVEY	72
SUPPLYING PRODUCTS TO THE AUTOMOTIVE INDUSTRY IS A DIFFICULT TASK	72
TABLE 13 KEY GLOBAL TIER 1 AUTOMOTIVE SUPPLIERS	73
ENGINE OIL PANS SEEM TO BE NEXT TO USE COMPOSITES	74
GENERAL MOTORS ADMITS THAT THERE ARE MANY TARGETS FOR LIGHTWEIGHTING	74

ΤΟΡΙϹ	PAGE NO.
CHAPTER 8 WHAT IS THE REALITY OF CARBON FIBER FOR THE AUTOMOTIVE INDUSTRY TODAY?	76
AUTOMOTIVE COMPOSITES ALLIANCE	76
SELECTED AUTOMOTIVE COMPOSITE ADVANCES	78
RESIN FOR AUTOMOTIVE PART CYCLE TIMES	78
SHOCK-ABSORBING AUTOMOTIVE SANDWICH PANELS	78
FIBER SIZINGS FOR AUTOMOTIVE COMPOSITES	78
HIGH-SPEED COMPRESSION MOLDING FOR AUTOMOTIVE APPLICATIONS	78
SOME RECENT COMPOSITES RESEARCH ON AUTOMOTIVE BODY PANELS	79
VOLVO MOVES AHEAD WITH PANEL TECHNOLOGIES	79
WHAT IS THE REALITY OF CARBON FIBER FOR THE AUTOMOTIVE INDUSTRY TODAY?	79
CARBON FIBERS STILL NEED SEVERAL IMPROVEMENTS	80
ANOTHER IMPORTANT AUTOMOTIVE SURVEY ON COMPOSITES	80
CHAPTER 9 CARBON FIBERS	82
INTRODUCTION	82
THE "LINE-UP" FROM RAW MATERIALS TO COMPOSITE PRODUCTS	83
COMPETITIVE COMPARISONS	83
TABLE 14 ADVANTAGES AND DISADVANTAGES OF CARBON-CARBON COMPOSITES	84
CARBON FIBER SUPPLY CHAIN	85
AUTOMOTIVE USAGE	85
GLOBAL OUTLOOK	86
BACKGROUND	86
AUTOMOTIVE APPLICATIONS	87
CARBON FIBER PRODUCTION	88
TABLE 15 GLOBAL CARBON FIBER PRODUCTION SHARE BY REGION, 2014 (%)	88
Europe	88
Chinese Segment	88
TABLE 16 GLOBAL CARBON FIBER SHARE BY LEADING PRODUCERS (%)	89
FURTHER DETAILS ON THE GEOGRAPHIC SEGMENTATION OF CARBON FIBER PRODUCERS	89
CARBON FIBER PRICES	90
AUTOMOTIVE SECTOR	91
Overview	91
Motor Vehicles	92
Seeking Modification with Automotive Carbon Fibers	93
The Reality of Carbon Fibers for Today's Automotive Industry	94
Manufacturing Process Maturity	94
Carbon Fibers Said to Be Falling Behind Other Lightweighting Materials	94
Carbon Fiber Material Introduced to North America	94
Supply Line Fragmentation	94
Transformed Vehicles and the Carbon Fiber End Game	95
Toray Moves into European Prepeg	95
There is Help on the Way and Cost Is Not the Whole Story	95
Ford Moving Forward with Increased Carbon Fiber Usage	96
Hexcel Launches Site for New Carbon Fiber Plant in France	96

ΤΟΡΙΟ	PAGE NO.
Is There Enough Precursor?	96
Porsche to Buy a Portion of Carbon Fiber Producer	96
"Top" Carbon-Fiber-Reinforced Plastic Composite Companies	96
Toray Buys a Stake in Automotive Molder Plasan Carbon Composites	97
Toray and Zoltek Merger is a Very Significant One.	97
Is Price Deterring Carbon Fiber From Mass Production?	97
BMW 7 Series Uses SGL's Carbon-Fiber-Reinforced Plastics	98
The Big Push for Lower Costs for Carbon Fibers in Automobiles Continues	98
New Technology Reduces Cycle Time	98
Increasing Carbon Fiber Production	99
Ford and DowAksa Plan to Improve Automotive Carbon Fiber	99
Russia Launches Carbon Fiber Production Facility	99
BMW Becoming More Involved with Carbon Fibers	99
Natural Fiber Composites	99
SELECTED AUTOMOTIVE COMPOSITE COMPANY ACTIVITIES	100
Hexcel's Solutions for High-Performance Automobiles	100
Toray Increases Carbon Fiber Capacity	101
Magna Increases Commitment in Carbon Fibers	101
A Noted German Company Moves Ahead in Composites	101
The Mitsubishi Group Companies Will Combine Carbon Fiber Businesses	101
Intrado Design Wins at JEC	102
Another Potential Breakthrough from CTS Composites	102
Scott Bader Becomes Daimler's Approved Supplier	102
Teijin Creates New Automotive Group	102
BASF to Manufacture Semifinished Automotive Composites	103
Teijin Opens Composite Technical Center in Detroit Area	103
ARE STRONGER GOVERNMENT REGULATIONS IN THE OFFING?	103
HOW WILL CRASH DAMAGE BE ASSESSED? - REPAIRED OR REPLACED	104
Overview	104
Automobile Racing Industry Experiences with Composite Automobiles	104
Repairing Bonded Substructures	105
OTHER NEW DEVELOPMENTS IN AUTOMOTIVE COMPOSITES	105
Viper Team Wins SPE Engineering Award	105
Carbon Fiber in a Recent Corvette	106
BMW and Toyota Join Forces Again	106
DuPont Develops Composite Side-Impact Beam	106
Toray Recently Purchased Zoltek for About \$600 Million	107
Austrian Firm Planning to Produce Carbon-Fiber-Composite Wheel	107
Power Trains Becoming a Key Target for Lightweighting	107
Gurit Wins Bid for Carbon Fiber Panels	107
New National Composites Innovation Center	108
Ford Develops Carbon Fiber "SuperCar"	108
Progress on Body Panels and Passenger Cells	108
Lightweight Integrated Process	108
Albany Engineered Composites Moves into Automotive Market	109
Bayer Increases Position in Composites	109

ΤΟΡΙΟ	PAGE NO.
QA1 Introduces Carbon Fiber Driveshafts	109
Prototype Cylinder Block Uses Fiber-Reinforced Plastics	110
The Automotive Industry's First Composite Suspension Coil	110
Aston Martin Launches Luxury Carbon Fiber Supercar	110
Prepeg Compression Molding Makes Its Commercial Debut	111
CHAPTER 10 RECYCLING OF AUTOMOTIVE COMPOSITES	113
OVERVIEW	113
COMPOSITE STRUCTURE END-OF-LIFE ISSUES	115
DO REINFORCED PLASTIC COMPOSITES REQUIRE A BETTER SOLUTION FOR THEIR END-OF-LIFE?	115
EFFORTS IN THERMOSET RECYCLING	116
BACKGROUND	116
PYROLYSIS	116
GLASS SEPARATION	116
GRINDING	116
RECENT DEVELOPMENTS	117
Carbon Recycling Coming to the Forefront in Europe	117
DSM Composite Resins is Actively Involved in Evaluating Recycling Technologies for Composites	117
Recycling Carbon Fiber Back Into the Automobile	117
BMW Closes the Carbon Fiber Loop	117
Reusing Automotive Composites Production Waste	118
CHAPTER 11 CONFERENCES, MEETINGS AND TRADE SHOWS	120
THE AMERICAN COMPOSITES MANUFACTURING ASSOCIATION (ACMA)	120
BACKGROUND	120
CAUCUS	120
CERTIFICATION	120
CONFERENCES	120
OTHER IMPORTANT GLOBAL INDUSTRY CONFERENCES	120
THE PLASTICS-IN-MOTION AUTOMOTIVE CONFERENCE	122
OTHER COMPOSITES CONFERENCES	122
COMPOSITE INDUSTRY INSTITUTE	122
CHAPTER 12 THE EUROPEAN UNION	124
OVERVIEW	124
MOTOR VEHICLE FUEL TAXES	124
SAFETY STANDARDS	124
AUTOMOTIVE USE OF COMPOSITES	124
OVERVIEW	124
RECENT DEVELOPMENTS	125
Overview	125
COMPOSITES EUROPE - 2015	126
European Thermoplastic Automotive Composite Consortium	126
Lenzing Sells Dolan and European Carbon Fiber	126
JEC Europe 2015 Showcases New Composites	126
Composites Europe 2015	126

ΤΟΡΙϹ	PAGE NO.
U.S. May Be Next Composites Europe Partner Country	126
Automobile Producers Want to Delay Tougher E.U. Emissions Testing	127
European Car Producers Urge Change on Carbon Dioxide Rules	127
Automotive Executives Say U.K. Exit from E.U. Would Not Be a Good Idea for Both	127
CHAPTER 13 ASIAN ACTIVITIES IN AUTOMOTIVE LIGHTWEIGHTING	129
JAPAN	129
OVERVIEW	129
FUEL-ECONOMY STANDARDS	129
AUTOMOTIVE ACTIVITIES RELATED TO COMPOSITE USAGE	129
CHINA	130
FUEL-ECONOMY STANDARDS	130
CAR INDUSTRY SEEKS LIGHTWEIGHTING COOPERATION	131
THE ROAD TO LIGHTER VEHICLES IN CHINA HAS SOME ROADBLOCKS	131
CHINA'S AUTOMOTIVE INDUSTRY IS PUTTING INCREASED FOCUS ON CARBON FIBERS	132
LIGHTWEIGHT CAR SEAT	132
INDIA	132
	104
CHAPTER 14 OTHER COMPOSITE-RELATED AUTOMOTIVE INDUSTRY ACTIVITIES	134
FORD'S NEW EFFORTS TO INCREASE CARBON FIBER USAGE	134
	134
	134
BMW'S E-CAR USES COMPOSITES	135
ELECTRIC CARS DRIVING PLASTICS IN CHINA	135
CHAPTER 15 RESINS USED IN AUTOMOTIVE COMPOSITES	137
THERMOSET VERSUS THERMOPLASTIC	137
RESIN CHOICES FOR USE IN AUTOMOTIVE COMPOSITES	137
THERMOSET RESINS	138
OVERVIEW	138
TABLE 17 REINFORCED THERMOSET PLASTIC COMPOSITE PROPERTIES AND MANUFACTURING PROCESSES	138
UNSATURATED POLYESTERS	138
Background	138
Ingredients of Unsaturated Polyester Formulations	139
TABLE 18 KEY INGREDIENTS OF UNSATURATED POLYESTER RESIN FORMULATIONS IN DESCENDING ORDER OF COMMERCIAL USE	139
Types of Unsaturated Polyesters	140
PHENOLICS	140
Background	140
Technology	140
Grades	141
Molding Compounds	141
Composite Usage	141
POLYURETHANES	142
Overview	142

ΤΟΡΙΟ	PAGE NO.
Background	142
Polyureas	142
Reaction-Injection Molding Products	143
Reinforced Reaction-Injection Molding Products	143
SRIM Products	143
Polyurethane Composites and the Automotive Industry	144
EPOXY RESINS	144
Introduction	144
Background	144
Chemistry	145
Chemical Epoxy Types	145
Technology	146
Epoxy Systems	146
Background	146
Nonmolded	146
Laminating Systems	146
Molded Epoxies	146
Epoxy Composites	147
Other Applications	148
Manufacturing Methods	148
Making Epoxy Composites Recyclable by Design	148
Prepeg Compression Molding	148
Snap Cures via Epoxy Systems	149
Epoxy,Bismaleimide Fabric Prepreg "Tiles"	149
Dow Develops an Advanced Epoxy for Composite Uses	149
VINYL ESTERS	150
Background	150
Technologies	150
Properties	150
Characteristics	151
Applications	151
What are Structural Thermoset Compounds?	151
THERMOPLASTICS	152
BACKGROUND	152
REINFORCEMENT DETAILS	152
COMMODITY THERMOPLASTICS	153
Background	153
Polypropylene	153
Background	153
Properties	153
Applications	154
Upgraded Polypropylene	154
Reinforced Polypropylenes	154
Overview	154
High-Impact Grades	155
Long Glass-Fiber Polypropylene	155
TABLE 19 TRADE NAMES OF KEY FIBER-REINFORCED POLYPROPYLENE	155

ΤΟΡΙϹ	PAGE NO.
ACRYLONITRILE BUTADIENE STYRENE	156
Background	156
Properties	156
Processing	156
Grades	157
Production	157
Reinforced Grades	157
Examples of Reinforced ABS Products	157
POLYAMIDES	158
Background	158
Properties	158
Processing	158
Major Types	159
Polyamide 66	159
Polyamide 6	159
Reinforced Polyamide Composites	159
NEW RESIN DEVELOPMENTS RELATED TO AUTOMOTIVE COMPOSITES	160
Thermoset Materials	160
Thermoplastic Autocomposites	160
CHAPTER 16 MARKET FORECASTS AND ESTIMATES	162
U.S. MOTOR VEHICLE MONTHLY ASSEMBLIES	162
TABLE 20 U.S. AUTOMOTIVE SALES, 2001-2015 (MILLIONS)	162
TABLE 21 TYPICAL COMPOSITE APPLICATIONS IN MOTOR VEHICLES	163
THE OVERALL GROWTH OF GLOBAL PLASTICS USAGE IN AUTOMOTIVE	162
PRODUCTION IS ABOUT 8% PER YEAR.	105
CHAPTER 17 AUTOMOTIVE COMPOSITE MARKET ESTIMATES AND FORECASTS	165
OVERVIEW	165
TABLE 22 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH2020 (MILLION POUNDS)	165
TABLE 23 GLOBAL EXTERIOR AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	165
TABLE 24 GLOBAL UNDER-THE-HOOD AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	166
TABLE 25 GLOBAL INTERIOR AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	167
GLOBAL AUTOMOTIVE COMPOSITE MARKET BY REGION	167
TABLE 26 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY REGION, THROUGH 2020(MILLION POUNDS)	167
TABLE 27 ASIAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
TABLE 28 EUROPEAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
TABLE 29 NORTH AMERICAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
AUTOMOTIVE COMPOSITE RESIN USAGE	170
TABLE 30 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY RESIN TYPE, THROUGH2020 (MILLION POUNDS)	170

ΤΟΡΙΟ	PAGE NO.
CARBON FIBER MARKET	170
TABLE 31 GLOBAL AUTOMOTIVE CARBON FIBER MARKET, 2015-2025 (MILLION POUNDS)	171
CHAPTER 18 COMPANY PROFILES	174
ADVANCED CARBON TECHNOLOGIES INC.	174
ADVANCED COMPOSITES INC.	174
ALBANY ENGINEERED COMPOSITES	175
AOC LLC	175
ASBURY CARBONS	175
BULK MOLDING COMPOUNDS INC.	176
THE COMPOSITES GROUP	176
CONTINENTAL STRUCTURAL PLASTICS	177
COOK COMPOSITES AND POLYMERS (CPP)	177
CORE MOLDING TECHNOLOGIES	178
CYTEC CORP.	178
DSM ENGINEERING PLASTICS NORTH AMERICA	178
FERRO CORP.	179
GLASFORMS INC.	180
GURIT SERVICES AG	180
HANWHA AZDEL SPECIALTIES	181
HAYSITE REINFORCED PLASTICS	181
HEXCEL CORP.	181
IDI COMPOSITES INTERNATIONAL	182
INTERPLASTIC CORP.	182
JOHNS MANVILLE	183
KRINGLAN COMPOSITES AG	183
MERIDIAN LIGHTWEIGHT TECHNOLOGIES	183
MITSUBISHI CHEMICAL CORP.	184
MITSUBISHI RAYON CO. LTD.	184
MITSUI CHEMICALS	185
MOMENTIVE SPECIALTY CHEMICALS	185
MORGAN ADVANCED MATERIALS AND TECHNOLOGY	186
NIPPON GRAPHITE FIBER CORP.	186
PLASAN CARBON COMPOSITES	187
QUANTUM COMPOSITES	187
REICHHOLD CHEMICAL	188
ROYAL TENCATE CORPORATE EMEA	188
RTP COMPANY	189
SAERTEX GMBH & COMPANY	189
SCOTT BADER COMPANY LIMITED	190
SGL CARBON GROUP	190
SPENCER COMPOSITE CORP.	191
	191
	192
	192
ZULIEK COMPANIES INC.	193

ΤΟΡΙΟ	PAGE NO.
CHAPTER 19 APPENDIX	195
SELECTED KEY ACRONYMS	195

TABLE HEADING	PAGE NO.
SUMMARY TABLE GLOBAL AUTOMOTIVE COMPOSITE MARKET, THROUGH 2020 (MILLION POUNDS)	6
TABLE 1 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	16
TABLE 2 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	24
TABLE 3 RESINS USED FOR SPECIFIC EXTERIOR AUTOMOTIVE PARTS	25
TABLE 4 RESINS USED FOR SPECIFIC INTERIOR AUTOMOTIVE PARTS	27
TABLE 5 SELECTED AUTOMOTIVE UNDER-THE-HOOD REINFORCED RESIN COMPOSITES BY PART	34
TABLE 6 AUTOMOTIVE MATERIALS STIFFNESS AND AVERAGE PRICE	44
TABLE 7 MAJOR END USES AND APPLICATIONS OF HIGH-STRENGTH STEEL	48
TABLE 8 COMMONLY USED PLASTICS IN TRANSPORTATION APPLICATIONS	50
TABLE 9 GLOBAL AUTOMOTIVE CONSUMPTION SHARE BY MATERIAL, 2014-2020 (%)	52
TABLE 10 SELECTED MANUFACTURING PROCESSES AND PROPERTIES OF REINFORCED THERMOSET COMPOSITES BY RESIN TYPE	59
TABLE 11 ADVANTAGES AND DISADVANTAGES OF CARBON-CARBON COMPOSITES	61
TABLE 12 GLOBAL MATERIAL USAGE SHARE IN THE AUTOMOTIVE INDUSTRY, 1977-2035 (%)	70
TABLE 13 KEY GLOBAL TIER 1 AUTOMOTIVE SUPPLIERS	73
TABLE 14 ADVANTAGES AND DISADVANTAGES OF CARBON-CARBON COMPOSITES	84
TABLE 15 GLOBAL CARBON FIBER PRODUCTION SHARE BY REGION, 2014 (%)	88
TABLE 16 GLOBAL CARBON FIBER SHARE BY LEADING PRODUCERS (%)	89
TABLE 17 REINFORCED THERMOSET PLASTIC COMPOSITE PROPERTIES AND MANUFACTURING PROCESSES	138
TABLE 18 KEY INGREDIENTS OF UNSATURATED POLYESTER RESIN FORMULATIONS IN DESCENDING ORDER OF COMMERCIAL USE	139
TABLE 19 TRADE NAMES OF KEY FIBER-REINFORCED POLYPROPYLENE	155
TABLE 20 U.S. AUTOMOTIVE SALES, 2001-2015 (MILLIONS)	162
TABLE 21 TYPICAL COMPOSITE APPLICATIONS IN MOTOR VEHICLES	163
TABLE 22 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020(MILLION POUNDS)	165
TABLE 23 GLOBAL EXTERIOR AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	165
TABLE 24 GLOBAL UNDER-THE-HOOD AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	166
TABLE 25 GLOBAL INTERIOR AUTOMOTIVE COMPOSITE MARKET BY PART, THROUGH 2020 (MILLION POUNDS)	167
TABLE 26 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY REGION, THROUGH 2020 (MILLION POUNDS)	167
TABLE 27 ASIAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
TABLE 28 EUROPEAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
TABLE 29 NORTH AMERICAN AUTOMOTIVE COMPOSITE MARKET BY SEGMENT, THROUGH 2020 (MILLION POUNDS)	168
TABLE 30 GLOBAL AUTOMOTIVE COMPOSITE MARKET BY RESIN TYPE, THROUGH2020 (MILLION POUNDS)	170
TABLE 31 GLOBAL AUTOMOTIVE CARBON FIBER MARKET, 2015–2025 (MILLION POUNDS)	171

LIST OF TABLES

LIST OF FIGURES

FIGURE TITLE	PAGE NO.
SUMMARY FIGURE GLOBAL AUTOMOTIVE COMPOSITE MARKET, 2014-2020 (MILLION POUNDS)	6