Global Markets and Technologies for Bioplastics

Published - Feb 2019| Code - PLS050E| Analyst - Jason Chen

Report Highlights

The global bioplastics market should reach 2.7 million metric tons by 2023 from 1.6 million metric tons in 2018 at a compound annual growth rate (CAGR) of 11.7% for the period 2018-2023.

Report Includes

  • 40 data tables and 16 additional tables
  • An overview of the global market for bioplastics
  • Analyses of global market trends, with data from 2016 to 2018, and projections of CAGRs through 2023
  • Identification of trends that will affect the use of bioplastics and their major end-use application
  • Information on specific end markets for bioplastics by material types, with sections devoted to each type of renewably sourced plastic
  • Analyses of market developments regarding major applications for bioplastics, including packaging, automotive, electrical/electronic, medical, building and construction
  • Comprehensive company profiles of major players in the market including Arkema, BASF, Dow Plastics, Huhtamaki, Myriant, Plantic Technologies Ltd., Synbra Technology and ZeaChem Inc.

Report Scope

The focus of this report is on plastics made from renewable resources such as biomass or food crops. There is also some potential development of bioplastics from animal resources. Plastics that could be produced from waste CO2 are also reviewed because of their potential impact on bioplastics, but their data are not included in the forecasts presented here. Bioplastics are further defined here as polymer materials that are produced by chemically or biologically synthesizing materials that contain renewable organic materials. Natural organic materials that are not chemically modified (e.g., wood composites are excluded). The report includes the use of renewable resources to create monomers that replace petroleum-based monomers such as feedstocks produced from sugarcane that are used to manufacture polyester and polyethylene. Ethanol, a major product in Brazil, is one small chemical step from ethylene.

The report focuses on the following resin chemistries:

  • Polylactic acid.
  • Thermoplastic starch.
  • Biopolyamides (nylons).
  • Polyhydroxyalkanoates.
  • Biopolyols/polyurethane.
  • Cellulosics.
  • Biopolytrimethylene terephthalate.
  • Biopolyethylene.
  • Biopolyethylene terephthalate.
  • Polybutylene succinate.

Biodegradable and photodegradable polymers made from petrochemical feedstocks are not included. Other renewable resin chemistries such as collagen and chitosan are covered but in less detail as their roles are not well developed.

Estimated values used are based on manufacturers’ total revenues. Projected and forecasted revenue values are in constant US dollars (2017) unadjusted for inflation.

Analyst Credentials

Jason Chen has been an analyst and consultant for the polymer, composite, fiber, textile and energy industries for 15 years. He works as a researcher, writer and/or editor for the American Composites Manufacturers Association (ACMA), China Textile Academy (CTA), China Chemical Fiber Association (CCFA), International Fiber Journal, Filtration News, Platts Emission Daily, Vision Systems Design, Pesticide and Toxic Chemical News and MobileTex. Currently he is the chief scientist of a company endeavoring to reduce China's air and water pollution. He has a degree in Civil Engineering, Chemicals and Advanced Materials from Shantou University.

Table of Contents & Pricing

All reports provided in PDF format. For shared licensing options (5+ Users), please call a representative at (+1) 781-489-7301 or contact us at info@bccresearch.com
Note: Reports are discounted or included with certain Memberships. See Membership Options.
Title/Chapter Name Pages Price Member Price
Full Report: Global Markets and Technologies for Bioplastics 187 $5,500 Free
Chapter- 1: Introduction7Free DownloadFree
Chapter- 2: Summary and Highlights3$250Free
Chapter- 3: The Bioplastics Industry8$240Free
Chapter- 4: Bioplastics by Type of Resin68$2,044Free
Chapter- 5: Global Outlook for Bioplastics6$180Free
Chapter- 6: Bioplastics in the Americas9$270Free
Chapter- 7: European Bioplastics Market8$240Free
Chapter- 8: Asian Bioplastics Market10$301Free
Chapter- 9: Bioplastics Processing Technologies6$180Free
Chapter- 10: Applications24$721Free
Chapter- 11: Issues Facing Bioplastics4$120Free
Chapter- 12: Standards and Certifications2$60Free
Chapter- 13: Company Profiles27$811Free
Chapter- 14: Leading Bioplastics Trade Groups1$30Free
Chapter- 15: Appendix I: Acronyms2$60Free
Chapter- 16: Appendix II: Selected Glossary of Terms2$60Free
 
Published - Jun-2016| Analyst - Jason Chen| Code - PLS050D

Report Highlights

The global bioplastic market totaled 1.6 million metric tons in 2015 and should total nearly 6.1 million metric tons in 2020, a compound annual growth rate (CAGR) of 30.0% for the five-year period, 2015 to 2020.

Report Includes

  • An overview of the global markets for bioplastics
  • Analyses of global market trends with data from 2014, 2015, and projections of CAGRs through 2020
  • Identification of trends that will affect the use of bioplastics and their major end-use application markets
  • Information on specific end markets for bioplastics by material types, with sections devoted to each type of renewably sourced plastic
  • Analysis of market developments regarding major applications for bioplastics, including packaging, automotive, electrical/electronic, medical, building and construction
  • Profiles of major players in the industry

Published - Jun-2014| Analyst - Jason Chen| Code - PLS050C

Report Highlights

The global bioplastic demand totaled 1.1 million metric tons in 2013. This is expected to reach 1.4 million metric tons in 2014 and about 6 million metric tons in 2019, a compound annual growth rate (CAGR) of 32.7% for the five-year period, 2014 to 2019.

Report Includes

  • An overview of the global market for bioplastics.
  • Analyses of global market trends with data from 2012 and 2013, estimates for 2014, and projections of CAGRs through 2019.
  • Identification of trends that will affect the use of bioplastics and their major end-use application markets.
  • Information on specific end markets for bioplastics by material types, with sections devoted to each type of renewably sourced plastic.
  • Analysis of market developments regarding major applications for bioplastics, including packaging, automotive, electrical/electronic, medical, building and construction.

Published - Feb-2012| Analyst - Doug Smock| Code - PLS050B

Report Highlights

The global use of bioplastics was 0.64 million metric tons in 2010 and 0.85 million metric tons in 2011. BCC expects that the use of bioplastics will increase up to 3.7 million metric tons by 2016, a compound annual growth rate (CAGR) of 34.3%.

Published - Sep-2010| Analyst - Doug Smock| Code - PLS050A

Report Highlights

  • Bioplastics will grow at a significant pace over the next 5 years. The total worldwide use of bioplastics is valued at 571,712 metric tons in 2010. This usage is expected to grow at a 41.4% compound annual growth rate (CAGR) from 2010 through 2015, to reach 3,230,660 metric tons in 2015.
  • By 2010, ready access to crops such as soybeans, corn, and sugarcane moved the United States strongly into bioplastics. North American usage is estimated at 258,180 metric tons in 2010 and is expected to increase at a 41.4% compound annual growth rate (CAGR) to reach 1,459,040 metric tons in 2015.
  • Use of bioplastics got off to a faster start in Europe than in the United States. European usage is now reported at 175,320 metric tons in 2010 and is expected to increase at a 33.9% compound annual growth rate (CAGR) to reach 753,760 metric tons in 2015. 
RELATED REPORTS
Share This Report